01/2008:0655

corrected 6.0

M_r 152.2

Water. Dissolve 1 g in 10 ml of *light petroleum R*. The solution is clear (2.2.1).

IMPURITIES

A. 2,6,6-trimethylbicyclo[3.1.1]hept-2-ene (α-pinene),

B. 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane (camphene),

C. 6,6-dimethyl-2-methylenebicyclo[3.1.1]heptane (β -pinene),

D. 3,3-dimethyl-2-oxabicyclo[2.2.2]octane (cineole),

- E. R1 = CH₃, R2 + R3 = O: 1,3,3-trimethylbicyclo[2.2.1]heptan-2-one (fenchone),
- F. R1 = CH₃, R2 = OH, R3 = H: *exo*-1,3,3trimethylbicyclo[2.2.1]heptan-2-ol (fenchol),
- G. R1 = H, R2 = OH, R3 = CH₃: *exo*-2,3,3trimethylbicyclo[2.2.1]heptan-2-ol (camphene hydrate),
- H. R1 = H, R2 = CH₃, R3 = OH: *endo*-2,3,3trimethylbicyclo[2.2.1]heptan-2-ol (methylcamphenilol),

- I. R = OH, R' = H: *exo*-1,7,7-trimethylbicyclo[2.2.1]heptan-2ol (*exo*-borneol),
- J. R = H, R' = OH: *endo*-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol (*endo*-borneol).

Camphora racemica

C₁₀H₁₆O [76-22-2]

DEFINITION

(1RS,4RS)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-one.

CHARACTERS

Appearance: white or almost white, crystalline powder or friable, crystalline masses, highly volatile even at room temperature.

Solubility: slightly soluble in water, very soluble in ethanol (96 per cent) and in light petroleum, freely soluble in fatty oils, very slightly soluble in glycerol.

IDENTIFICATION

First identification: A, C.

Second identification: A, B, D.

- A. Optical rotation (see Tests).
- B. Melting point (*2.2.14*): 172 °C to 180 °C.
- C. Infrared absorption spectrophotometry (2.2.24). *Preparation*: mulls in *liquid paraffin R*. *Comparison*: racemic camphor CRS.
- D. Dissolve 1.0 g in 30 ml of *methanol R*. Add 1.0 g of *hydroxylamine hydrochloride R* and 1.0 g of *anhydrous sodium acetate R*. Boil under a reflux condenser for 2 h. Allow to cool and add 100 ml of *water R*. A precipitate is formed. Filter, wash with 10 ml of *water R* and recrystallize from 10 ml of a mixture of 4 volumes of *ethanol (96 per cent) R* and 6 volumes of *water R*. The crystals, dried *in vacuo*, melt (*2.2.14*) at 118 °C to 121 °C.

TESTS

Carry out the weighings rapidly.

Solution S. Dissolve 2.50 g in 10 ml of *ethanol (96 per cent) R* and dilute to 25.0 ml with the same solvent.

Appearance of solution. Solution S is clear (2.2.1) and colourless (2.2.2, Method II).

Acidity or alkalinity. Dissolve 1.0 g in 10 ml of *ethanol* (96 per cent) R and add 0.1 ml of *phenolphthalein* solution R1. The solution is colourless. Not more than 0.2 ml of 0.1 M sodium hydroxide is required to change the colour of the indicator.

Optical rotation (2.2.7): -0.15° to $+0.15^{\circ}$, determined on solution S.

Related substances. Gas chromatography (2.2.28).

Test solution. Dissolve 50 mg of the substance to be examined in *hexane* R and dilute to 50.0 ml with the same solvent.

Reference solution (a). Dissolve 50 mg of the substance to be examined and 50 mg of *bornyl acetate R* in *hexane R* and dilute to 50.0 ml with the same solvent.

Reference solution (b). Dilute 1.0 ml of the test solution to 200.0 ml with *hexane* R.

Column:

- size: $l = 2 \text{ m}, \emptyset = 2 \text{ mm};$
- stationary phase: diatomaceous earth for gas chromatography R impregnated with 10 per cent m/m of macrogol 20 000 R.

Carrier gas: nitrogen for chromatography R. Flow rate: 30 ml/min.

Temperature:

- column: 130 °C;
- injection port and detector: 200 °C.

Detection: flame ionisation.

Injection: 1 µl.

Run time: 3 times the retention time of camphor. System suitability:

- resolution: minimum 1.5 between the peaks due to camphor and bornyl acetate in the chromatogram obtained with reference solution (a):
- signal-to-noise ratio: minimum 5 for the principal peak in the chromatogram obtained with reference solution (b).

Limits:

- any impurity: for each impurity, not more than 2 per cent of the area of the principal peak;
- *total*: not more than 4 per cent of the area of the principal peak:
- disregard limit: the area of the principal peak in the chromatogram obtained with reference solution (b).

Halogens: maximum 100 ppm.

Dissolve 1.0 g in 10 ml of *2-propanol R* in a distillation flask. Add 1.5 ml of *dilute sodium hydroxide solution R* and 50 mg of nickel-aluminium alloy R. Heat on a water-bath until the 2-propanol R has evaporated. Allow to cool and add 5 ml of *water R*. Mix and filter through a wet filter previously washed with *water R* until free from chlorides. Dilute the filtrate to 10.0 ml with *water R*. To 5.0 ml of this solution, add nitric acid R dropwise until the precipitate which forms is redissolved and dilute to 15 ml with water R. The solution complies with the limit test for chlorides (2.4.4).

Water. Dissolve 1 g in 10 ml of *light petroleum R*. The solution is clear (2.2.1).

Residue on evaporation: maximum 0.05 per cent.

Evaporate 2.0 g on a water bath and dry at 100-105 °C for 1 h. The residue weighs not more than 1 mg.

CAPRYLIC ACID

Acidum caprylicum

CO₂H

 $C_8H_{16}O_2$ [124-07-2]

*M*_144.2

DEFINITION

Octanoic acid.

H₃C

Content: 99.0 per cent to 100.5 per cent (anhydrous substance).

CHARACTERS

Appearance: clear, colourless or slightly yellowish, oily liquid.

Solubility: very slightly soluble in water, very soluble in acetone and in ethanol (96 per cent). It dissolves in dilute solutions of alkali hydroxides.

IDENTIFICATION

- A. Relative density (see Tests).
- B. Examine the chromatograms obtained in the test for related substances.

Results: the principal peak in the chromatogram obtained with the test solution is similar in retention time and size to the principal peak in the chromatogram obtained with reference solution (a).

TESTS

Appearance. The substance to be examined is clear (2.2.1) and not more intensely coloured than reference solution Y₅ (2.2.2, Method II).

Relative density (2.2.5): 0.909 to 0.912.

Related substances. Gas chromatography (2.2.28): use the normalisation procedure.

Test solution. Dissolve 0.10 g of the substance to be examined in *ethyl acetate R* and dilute to 10.0 ml with the same solvent.

Reference solution (a). Dissolve 0.10 g of caprylic acid CRS in *ethyl acetate R* and dilute to 10.0 ml with the same solvent. *Reference solution (b).* Dilute 1.0 ml of the test solution to 100.0 ml with ethyl acetate R. Dilute 5.0 ml of this solution to 50.0 ml with *ethyl acetate R*.

Column:

- material: fused silica;
- size: l = 30 m, $\emptyset = 0.25 \text{ mm}$;
- stationary phase: macrogol 20 000 2-nitroterephtha*late R* (film thickness $0.25 \ \mu m$).

Carrier gas: helium for chromatography R.

Flow rate: 1.5 ml/min.

Split ratio: 1:100.

Temperature:

	Time (min)	Temperature (°C)
Column	0 - 1	100
	1 - 25	$100 \rightarrow 220$
	25 - 35	220
Injection port		250
Detector		250

01/2008:1401 Detection: flame ionisation.

Injection: 1 µl.

System suitability: reference solution (b):

- *signal-to-noise ratio*: minimum 5 for the principal peak. Limits

- *any impurity*: for each impurity, maximum 0.3 per cent; - *total*: maximum 0.5 per cent;
- *disregard limit*: 0.5 times the area of the principal peak in the chromatogram obtained with reference solution (b) (0.05 per cent).

Heavy metals (2.4.8): maximum 10 ppm.

Dissolve 2.0 g in *ethanol (96 per cent)* R and dilute to 20 ml with the same solvent. 12 ml of the solution complies with test B. Prepare the reference solution using 1 ml of