- A. R2 = R3 = R4 = R5 = R6 = H: phenol,
- B. R2 = CH₃, R3 = R4 = R5 = R6 = H: 2-methylphenol (*o*-cresol, cresol),
- C. R2 = R3 = R5 = R6 = H, R4 = CH₃: 4-methylphenol (*p*-cresol).
- D. R2 = R6 = CH₃, R3 = R4 = R5 = H: 2,6-dimethylphenol (2,6-xylenol),
- E. $R2 = C_2H_5$, R3 = R4 = R5 = R6 = H: 2-ethylphenol (*o*-ethylphenol),
- F. R2 = R4 = CH₃, R3 = R5 = R6 = H: 2,4-dimethylphenol (2,4-xylenol),
- G. R2 = R5 = CH₃, R3 = R4 = R6 = H: 2,5-dimethylphenol (2,5-xylenol),
- H. $R2 = CH(CH_3)_2$, R3 = R4 = R5 = R6 = H: 2-(1-methylethyl)phenol,
- R2 = R3 = CH₃, R4 = R5 = R6 = H: 2,3-dimethylphenol (2,3-xylenol),
- J. R2 = R4 = R6 = H, R3 = R5 = CH₃: 3,5-dimethylphenol (3,5-xylenol),
- K. R2 = R3 = R5 = R6 = H, $R4 = C_2H_5$: 4-ethylphenol (*p*-ethylphenol),
- L. R2 = R5 = R6 = H, R3 = R4 = CH₃: 3,4-dimethylphenol (3,4-xylenol),
- M. $R2 = R3 = R5 = CH_3$, R4 = R6 = H: 2,3,5-trimethylphenol.

01/2008:1346

METAMIZOLE SODIUM

Metamizolum natricum

$$N_a$$
 N_a
 N_b
 N_b

 $C_{13}H_{16}N_3NaO_4S,H_2O$ [5907-38-0] $M_{\rm r}$ 351.4

DEFINITION

Sodium [(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1*H*-pyrazol-4-yl)-*N*-methylamino]methanesulphonate monohydrate.

Content: 99.0 per cent to 101.0 per cent (dried substance).

CHARACTERS

Appearance: white or almost white, crystalline powder. *Solubility*: very soluble in water, soluble in ethanol (96 per cent).

IDENTIFICATION

First identification: A, D.

Second identification: B, C, D.

A. Infrared absorption spectrophotometry (2.2.24).

Comparison: metamizole sodium CRS.

- B. Dissolve 50 mg in 1 ml of *strong hydrogen peroxide solution R*. A blue colour is produced which fades rapidly and turns to intense red in a few minutes.
- C. Place 0.10 g in a test tube, add some glass beads and dissolve the substance in 1.5 ml of water R. Add 1.5 ml of dilute hydrochloric acid R and place a filter paper wetted with a solution of 20 mg of potassium iodate R in 2 ml of starch solution R at the open end of the test tube. Heat gently, the evolving vapour of sulphur dioxide colours the filter paper blue. After heating gently for 1 min take a glass rod with a drop of a 10 g/l solution of chromotropic acid, sodium salt R in sulphuric acid R and place in the opening of the tube. Within 10 min, a blue-violet colour develops in the drop of the reagent.
- D. 0.5 ml of solution S (see Tests) gives reaction (a) of sodium (2.3.1).

TESTS

Solution S. Dissolve 2.0 g in *carbon dioxide-free water R* and dilute to 40 ml with the same solvent.

Appearance of solution. Solution S is clear (2.2.1) and immediately after preparation, not more intensely coloured than reference solution BY₆ (2.2.2, Method I).

Acidity or alkalinity. To 5 ml of solution S, add 0.1 ml of *phenolphthalein solution R1*. The solution is colourless. Not more than 0.1 ml of 0.02 M sodium hydroxide is required to change the colour of the indicator to pink.

Related substances. Liquid chromatography (2.2.29). *Prepare the solutions immediately before use.*

Test solution. Dissolve 50.0 mg of the substance to be examined in *methanol R* and dilute to 10.0 ml with the same solvent.

Reference solution (a). Dissolve 10.0 mg of *metamizole impurity A CRS* in *methanol R* and dilute to 20.0 ml with the same solvent.

Reference solution (b). Dilute 1.0 ml of reference solution (a) to 20.0 ml with $methanol\ R$.

Reference solution (c). Dissolve 40 mg of metamizole sodium CRS in methanol R and dilute to 20.0 ml with the same solvent.

Reference solution (d). In order to prepare impurity C *in situ*, boil 10 ml of reference solution (c) under reflux for 10 min. Allow to cool to room temperature and dilute to 20.0 ml with *methanol R*.

Reference solution (e). To 6 ml of reference solution (a) add 1 ml of reference solution (c).

Column:

- size: l = 0.25 m, $\emptyset = 4.6$ mm;
- stationary phase: base-deactivated octadecylsilyl silica gel for chromatography R (5 µm).

Mobile phase: mix 28 volumes of *methanol R* and 72 volumes of a buffer solution prepared as follows: mix 1000 volumes of a 6.0 g/l solution of *sodium dihydrogen phosphate R* and 1 volume of *triethylamine R*, then adjust to pH 7.0 with *strong sodium hydroxide solution R*.

Flow rate: 1.0 ml/min.

Detection: spectrophotometer at 254 nm.

Injection: 10 µl of the test solution and reference

solutions (b), (d) and (e).

Run time: 3.5 times the retention time of metamizole.

Elution order: impurity A, metamizole, impurity B,

impurity C, impurity D.

System suitability: reference solution (e):

 resolution: minimum 2.5 between the peaks due to impurity A and metamizole.

Limits

- impurity C: not more than the area of the principal peak in the chromatogram obtained with reference solution (b) (0.5 per cent);
- impurities A, B, D: for each impurity, not more 0.4 times the area of the principal peak in the chromatogram obtained with reference solution (b) (0.2 per cent);
- total: not more than the area of the principal peak in the chromatogram obtained with reference solution (b) (0.5 per cent);
- disregard limit: 0.05 times the area of the principal peak in the chromatogram obtained with the reference solution (b) (0.025 per cent).

Sulphates (2.4.13): maximum 0.1 per cent.

Dissolve $0.150~{\rm g}$ in distilled water R and dilute to 15 ml with the same solvent.

Heavy metals (2.4.8): maximum 20 ppm.

Dissolve 2.0 g in *water R* and dilute to 20 ml with the same solvent. 12 ml of the freshly prepared solution complies with test A. Prepare the reference solution using *lead standard solution (2 ppm Pb) R*.

Loss on drying (2.2.32): 4.9 per cent to 5.3 per cent, determined on 1.000 g by drying in an oven at 105 °C.

ASSAY

Dissolve 0.200 g in 10 ml of $0.01\,M$ hydrochloric acid previously cooled in iced water and titrate immediately, dropwise, with $0.05\,M$ iodine. Before each addition of $0.05\,M$ iodine dissolve the precipitate by swirling. At the end of the titration add 2 ml of starch solution R and titrate until the blue colour of the solution persists for at least 2 min. The temperature of the solution during the titration must not exceed $10\,^{\circ}\mathrm{C}$.

1 ml of $0.05 \, M$ iodine is equivalent to 16.67 mg of $C_{13}H_{16}N_3NaO_4S$.

STORAGE

Protected from light.

IMPURITIES

Specified impurities: A, B, C, D.

N R CH₃

- A. R = NHCHO: 4-formylamino-1,5-dimethyl-2-phenyl-1,2-dihydro-3*H*-pyrazol-3-one,
- B. R = NH₂: 4-amino-1,5-dimethyl-2-phenyl-1,2-dihydro-3*H*-pyrazol-3-one,
- C. R = NHCH₃: 4-methylamino-1,5-dimethyl-2-phenyl-1,2-dihydro-3*H*-pyrazol-3-one,

D. R = N(CH₃)₂: 4-dimethylamino-1,5-dimethyl-2-phenyl-1,2-dihydro-3*H*-pyrazol-3-one.

01/2008:0931 corrected 6.0

METFORMIN HYDROCHLORIDE

Metformini hydrochloridum

$$H_2N$$
 NH
 NH
 NH
 N
 N
 CH_3
 HCI
 CH_3

C₄H₁₂ClN₅ [1115-70-4] M_{r} 165.6

DEFINITION

1,1-Dimethylbiguanide hydrochloride.

Content: 98.5 per cent to 101.0 per cent (dried substance).

CHARACTERS

Appearance: white or almost white crystals.

Solubility: freely soluble in water, slightly soluble in alcohol, practically insoluble in acetone and in methylene chloride.

IDENTIFICATION

First identification: B, E.

Second identification: A, C, D, E.

A. Melting point (2.2.14): 222 °C to 226 °C.

B. Infrared absorption spectrophotometry (2.2.24).

Preparation: discs of potassium chloride R.

Comparison: metformin hydrochloride CRS.

C. Thin-layer chromatography (2.2.27).

Test solution. Dissolve 20 mg of the substance to be examined in $water\ R$ and dilute to 5 ml with the same solvent.

Reference solution. Dissolve 20 mg of metformin $hydrochloride\ CRS$ in $water\ R$ and dilute to 5 ml with the same solvent.

Plate: TLC silica gel G plate R.

Mobile phase: upper layer of a mixture of 10 volumes of *glacial acetic acid R*, 40 volumes of *butanol R* and 50 volumes of *water R*.

Application: 5 µl.

Development: over a path of 15 cm.

Drying: at 100-105 °C for 15 min.

Detection: spray with a mixture of equal volumes of a 100 g/l solution of *sodium nitroprusside R*, a 100 g/l solution of *potassium ferricyanide R* and a 100 g/l solution of *sodium hydroxide R*, prepared 20 min before use.

Results: the principal spot in the chromatogram obtained with the test solution is similar in position, colour and size to the principal spot in the chromatogram obtained with the reference solution.

- D. Dissolve about 5 mg in *water R* and dilute to 100 ml with the same solvent. To 2 ml of the solution add 0.25 ml of *strong sodium hydroxide solution R* and 0.10 ml of *co-naphthol solution R*. Mix and allow to stand in iced water for 15 min. Add 0.5 ml of *sodium hypobromite solution R* and mix. A pink colour develops.
- E. It gives reaction (a) of chlorides (2.3.1).