Phosphates (2.4.II): maximum 0.1 per cent. Dilute 1 ml of solution S to 10 ml with water R. Dilute 1 ml of this solution to 100 ml with water R.

Sulphates (2.4.III): maximum 500 ppm. Dilute 3 ml of solution S to 15 ml with water R.

Iron (2.4.9): maximum 20 ppm. Dilute 5 ml of solution S to 10 ml with water R.

Heavy metals (2.4.8): maximum 20 ppm. Dilute 10 ml of solution S to 20 ml with water R. 12 ml of the solution complies with limit test A. Prepare the standard using 10 ml of lead standard solution (1 ppm Pb) R.

Water (2.5.III): 25.0 per cent to 35.0 per cent, determined on 0.100 g.

ASSAY
Dissolve 0.250 g in 30 ml of water R. Titrate with 0.05 M sulphuric acid, determining the end-point potentiometrically (2.2.20), n_1.

Calculate the percentage content of sodium glycerophosphate (anhydrous substance) from the expression:

$$\frac{216.0 (n_1 - n_2)}{m (100 - a)}$$

a = percentage content of water,
n_1 = volume of 0.05 M sulphuric acid used in the assay, in millilitres,
n_2 = volume of 0.1 M hydrochloric acid used in the test for alkalinity, in millilitres,
m = mass of the substance to be examined, in grams.

01/2008:1472

SODIUM HYALURONATE

Natrii hyaluronas

\[(C_{n}H_{m}NNaO_{r})_{x}\] [9067-32-7]

DEFINITION
Sodium salt of hyaluronic acid, a glycosaminoglycan consisting of \(\alpha\)-glucuronic acid and \(N\)-acetyl-\(\beta\)-glucosamine disaccharide units.

Content: 95.0 per cent to 105.0 per cent (dried substance).

Intrinsic viscosity: 90 per cent to 120 per cent of the value stated on the label.

PRODUCTION
It is extracted from cocks' combs or obtained by fermentation from Streptococci, Lancefield Groups A and C. When produced by fermentation of gram-positive bacteria, the process must be shown to reduce or eliminate pyrogenic or inflammatory components of the cell wall.

CHARACTERS
Appearance: white or almost white, very hygroscopic powder or fibrous aggregate.

Solubility: sparingly soluble or soluble in water, practically insoluble in acetone and in anhydrous ethanol.

IDENTIFICATION
A. Infrared absorption spectrophotometry (2.2.24).

B. It gives reaction (a) of sodium (2.3.I).

TESTS
Solution S. Weigh a quantity of the substance to be examined equivalent to 0.10 g of the dried substance and add 30.0 ml of a 9 g/l solution of sodium chloride R. Mix gently on a shaker until dissolved (about 12 h).

Appearance of solution. Solution S is clear (2.1) and its absorbance (2.2.25) at 600 nm is maximum 0.01.

pH (2.2.3): 5.0 to 8.5.

Dissolve the substance to be examined in carbon dioxide-free water R to obtain a solution containing a quantity equivalent to 5 mg of the dried substance per millilitre.

Intrinsic viscosity. Sodium hyaluronate is very hygroscopic and must be protected from moisture during weighing.

Buffer solution (0.15 M sodium chloride in 0.01 M phosphate buffer solution pH 7.0). Dissolve 0.78 g of sodium dihydrogen phosphate R and 4.50 g of sodium chloride R in water R and dilute to 500.0 ml with the same solvent (solution A). Dissolve 1.79 g of disodium hydrogen phosphate R and 4.50 g of sodium chloride R in water R and dilute to 500.0 ml with the same solvent (solution B). Mix solutions A and B until a pH of 7.0 is reached. Filter through a sintered-glass filter (4).

Test solution (a). Weigh 0.200 g (m_n) (NOTE: this value is only indicative and should be adjusted after an initial measurement of the viscosity of test solution (a) of the substance to be examined and dilute with 50.0 g (m_{sw}) of buffer solution at 4 °C. Mix the solution by shaking at 4 °C during 24 h. Weigh 5.00 g (m_s) of the solution and dilute with 100.0 g (m_{sw}) of buffer solution at 25 °C. Mix this solution by shaking for 20 min. Filter the solution through a sintered-glass filter (100), and discard the first 10 ml.

Test solution (b). Weigh 30.0 g (m_n) of test solution (a) and dilute with 10.0 g (m_{sw}) of buffer solution at 25 °C. Mix this solution by shaking for 20 min. Filter the solution through a sintered-glass filter (100) and discard the first 10 ml.

Test solution (c). Weigh 20.0 g (m_n) of test solution (a) and dilute with 20.0 g (m_{sw}) of buffer solution at 25 °C. Mix this solution by shaking for 20 min. Filter the solution through a sintered-glass filter (100) and discard the first 10 ml.

Test solution (d). Weigh 10.0 g (m_n) of test solution (a) and dilute with 30.0 g (m_{sw}) of buffer solution at 25 °C. Mix this solution by shaking for 20 min. Filter the solution through a sintered-glass filter (100) and discard the first 10 ml.

Determine the flow-times (2.2.9) for the buffer solution (t_0) and for the 4 test solutions (t_1, t_2, t_3, and t_4) at 25.00 ± 0.03 °C. Use an appropriate suspended level viscometer (specifications: viscometer constant about 0.005 mm²/s², kinematic viscosity of 1.5 mm²/s, internal diameter of tube R 0.53 mm, volume of bulb C 5.6 ml, internal diameter of tube N 2.8-3.2 mm) with a funnel-shaped lower capillary end. Use the same viscometer for all measurements; measure all outflow times in triplicate. The test is not valid unless the results do not differ by more than
0.35 per cent from the mean and if the flow time \(t_i \) is not less than 1.6 and not more than 1.8 times \(t_0 \). If this is not the case, adjust the value of \(m_{sp} \) and repeat the procedure.

Calculation of the relative viscosities

Since the densities of the sodium hyaluronate solutions and of the solvent are almost equal, the relative viscosities \(\eta_i \) (being \(\eta_i, \eta_{s0}, \eta_{sp} \) and \(\eta_{sd} \)) can be calculated from the ratio of the flow times for the respective solutions \(t_i \) (being \(t_i, t_2, t_3, t_4 \) and \(t_1 \)) to the flow time of the solvent \(t_0 \) but taking into account the kinetic energy correction factor for the capillary \((B = 30 \, 800 \, s^2)\), using the following expression:

\[
\frac{t_i}{t_0} = \frac{\eta_{s0}}{\eta_{sp}} = \frac{\eta_{s0}}{\eta_{sd}} \left(\frac{m_{sp} + \rho_{25}}{m_{sp} + m_{25}} \right) \left(\frac{m_{11} + m_{11}}{m_{12} + m_{12}} \right) x
\]

\(x \) = percentage content of sodium hyaluronate as determined under Assay.

\(h \) = percentage loss on drying.

\(\rho_{25} \) = 1005 kg/m³ (density of the test solution at 25 °C).

Calculate the concentration \(c_1 \) (expressed in kg/m³) of sodium hyaluronate in test solution (a) using the following expression:

\[
c_1 = \frac{m_{11} \times x \times (100 - h) \times m_{12}}{100 \times 100 \times (m_{0p} + m_{0s}) \times (m_{12} + m_{11})}
\]

Calculate the concentration \(c_2 \) (expressed in kg/m³) of sodium hyaluronate in test solution (b) using the following expression:

\[
c_2 = \frac{m_{2p} \times m_{11} \times m_{25}}{m_{3s} + m_{2p}}
\]

Calculate the concentration \(c_3 \) (expressed in kg/m³) of sodium hyaluronate in test solution (c) using the following expression:

\[
c_3 = \frac{m_{3p} \times m_{12}}{m_{4s} + m_{3p}}
\]

Calculate the concentration \(c_4 \) (expressed in kg/m³) of sodium hyaluronate in test solution (d) using the following expression:

\[
c_4 = \frac{m_{4p} \times m_{12}}{m_{4s} + m_{4p}}
\]

Calculation of the intrinsic viscosity

Calculate the intrinsic viscosity [\(\eta \)] by linear least-squares regression analysis using the Martin equation:

\[
\log \left(\frac{\eta - 1}{c} \right) = b \log |\eta| + a |\eta| c
\]

The decimal antilogarithm of the intercept is the intrinsic viscosity expressed in m²/kg.

Sulphated glycosaminoglycans: maximum 1 per cent, if the product is extracted from cocks’ combs.

Appropriate safety precautions are to be taken when handling perchloric acid at elevated temperature.

Test solution. Introduce a quantity of the substance to be examined equivalent to 50.0 mg of the dried substance into a test-tube 150 mm long and 16 mm in internal diameter and dissolve in 1.0 ml of perchloric acid R.

Reference solution. Dissolve 0.149 g of anhydrous sodium sulphate R in water R and dilute to 100.0 ml with the same solvent. Dilute 10.0 ml to 100.0 ml with water R. Evaporate 1.0 ml in a test-tube 150 mm long and 16 mm in internal diameter in a heating block at 90-95 °C, and dissolve the residue in 1.0 ml of perchloric acid R.

Plug each test-tube with a piece of glass wool. Place the test-tubes in a heating block or a silicone oil bath maintained at 180 °C and heat until clear, colourless solutions are obtained (about 12 h). Remove the test-tubes and cool to room temperature. Add to each test-tube 3.0 ml of a 33.3 g/l solution of barium chloride R, cap and shake vigorously. Allow the test-tubes to stand for 30 min. Shake each test-tube once again, and determine the absorbance (2.2.25) at 660 nm, using water R as a blank.

The absorbance obtained with the test solution is not greater than the absorbance obtained with the reference solution.

Nucleic acids. The absorbance (2.2.25) of solution S at 260 nm is maximum 0.5.

Protein: maximum 0.3 per cent; maximum 0.1 per cent, if intended for use in the manufacture of parenteral dosage forms.

Test solution (a). Dissolve the substance to be examined in water R to obtain a solution containing a quantity equivalent to about 10 mg of the dried substance per millilitre.

Test solution (b). Mix equal volumes of test solution (a) and water R.

Reference solutions. Prepare a 0.5 mg/ml stock solution of bovine albumin R in water R. Prepare 5 dilutions of the stock solution containing between 5 µg/ml and 50 µg/ml of bovine albumin R.

Add 2.5 ml of freshly prepared cupri-tartaric solution R3 to test-tubes containing 2.5 ml of water R (blank), 2.5 ml of the test solutions (a) or (b) or 2.5 ml of the reference solutions. Mix after each addition. After about 10 min, add to each test-tube 0.50 ml of a mixture of equal volumes of phosphomolybdotungstic reagent R and water R prepared immediately before use. Mix after each addition. After 30 min, measure the absorbance (2.2.25) of each solution at 750 nm against the blank. From the calibration curve obtained with the 5 reference solutions determine the content of protein in the test solutions.

Chlorides (2.4.4): maximum 0.5 per cent.

Dissolve 67 mg in 100 ml of water R.

Iron: maximum 80.0 ppm.

Atomic absorption spectrometry (2.2.23, Method II).

Test solution. Dissolve a quantity of the substance to be examined equivalent to 0.25 g of the dried substance in 1 ml of nitric acid R by heating on a water-bath. Cool and dilute to 10.0 ml with water R.

Reference solutions. Prepare 2 reference solutions in the same manner as the test solution, adding 1.0 ml and 2.0 ml respectively of iron standard solution (10 ppm Fe) R to the dissolved substance to be examined.

Source: iron hollow-cathode lamp using a transmission band of 0.2 nm.

Atomisation device: air-acetylene flame.

Loss on drying (2.2.32): maximum 20.0 per cent, determined on 0.500 g by drying at 100-110 °C over diphosphorus pentoxide R for 6 h.
Sodium hydrogen carbonate

DEFINITION

Content: 99.0 per cent to 101.0 per cent.

CHARACTERS

Appearance: white or almost white, crystalline powder.

Solubility: soluble in water, practically insoluble in ethanol (96 per cent).

When heated in the dry state or in solution, it gradually changes into sodium carbonate.

IDENTIFICATION

A. To 5 ml of solution S (see Tests) add 0.1 ml of phenolphthalein solution R. A pale pink colour is produced. Heat; gas is evolved and the solution becomes red.

B. It gives the reaction of carbonates and bicarbonates (2.3.1).

C. Solution S gives reaction (a) of sodium (2.3.1).

TESTS

Solution S. Dissolve 5.0 g in 90 ml of carbon dioxide-free water R and dilute to 100.0 ml with the same solvent.

Appearance of solution. Solution S is clear (2.2.1) and colourless (2.2.2, Method II).

Carbonates. The pH (2.2.3) of freshly prepared solution S is not greater than 8.6.

Chlorides (2.4.4): maximum 150 ppm.

To 7 ml of solution S add 2 ml of nitric acid R and dilute to 15 ml with water R.

Sulphates (2.4.13): maximum 150 ppm.

To a suspension of 1.0 g in 10 ml of distilled water R add hydrochloric acid R until neutral and about 1 ml in excess. Dilute to 15 ml with distilled water R.